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SUMMARY

This report is concerned with the development of a general method for calcu-
lating unsteady heat transfer on turbine blades. It is based on the numerical
solution of the boundary-layer equations for laminar, transitional and turbu-
lent flows. A novel procedure has been developed to account for the movement
of the stagnation point caused by blade-passing wakes and has been applied to
the stagnation region of three model flows with results which confirm its
validity for laminar flows. It has also been applied to an experimental
arrangement in which the average Nusselt number has been reported for turbulent

flows and the results show considerable promise.
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1.0 INTRODUCTION

Gas turbine designers are constantly expanding the pressure and temperature
operating thresholds of modern turbines in order to achieve greater power
densities. This in turn requires careful thermal-structural analysis in order
to ensure that these turbines, which deliver such excellent performance, will
also run for a long time before maintenance is required. The costs associated
with hot section maintenance account for approximately 60 percent of total air-
craft engine maintenance [1] and the turbine industry is aggressively pursuing
programs to improve the predictability of turbine 1ife [2]. 1In addition, NASA
has a durability technology program, known as the Hot Section Technology (HOST)
project [3,4] directed at improving the predictive tools for analyzing aircraft
gas turbines and another program directed at improvement of the durability of
the Space Shuttle Main Engine (SSME) [5].

The ability to predict the metal temperature distribution is a key factor in
1ife prediction. Coincident with the beginning of the HOST project, Stepka [6]
estimated that the ability to predict steady-state metal temperature in an
operating engine was within 100K, and that this could be refined to 50K by
testing prototypes. This level of thermal accuracy is estimated to lead to an

order of magnitude uncertainty in life prediction [7].

Periodic reviews of gas turbine heat transfer [8-10] suggest that progress is
being made in measuring and analyzing the complex flows associated with steady-
state heat transfer in gas turbines. Research on unsteady heat transfer in
turbine passages is, however, just beginning to appear. It is premature to
evaluate the effects of wake-generated unsteady heat transfer on turbine dura-
bility but the research data to provide the necessary thermomechanical loads
are emerging rapidly [11-20] with most of the information of aerodynamic prop-
erties acquired in large low-speed turbines. Dring, et al. [11] explored the
nature of the boundary-layer response to turbine wakes and the unsteady pres-
sure loading using thin-film surface sensors. Hodson [13] and Binder, et al.
[14] mapped the convection of wakes through the rotor and flow properties in a
rotor at 8850 rpm have also been reported in [14].

The nature of the blade-passing problem can be explained in relation to Fig.
la which shows that the rotor blade passes through the wake of the upstream



(a) (b)

Figure 1. Flow configuration. (a) Turbine stage. (b) Simulation.

stator blade and generates a wake which affects the onset flow to the second
stator. In effect, the blades of the rotor and second stator are subjected to
a freestream velocity which varies periodically with time and with a random
turbulence fluctuation superimposed. These effects may be simulated by the
arrangement of Fig. 1b which shows one cylinder of a number arranged on a wheel
which rotates upstream of a turbine blade.

Most relevant heat-transfer data have been obtained in short-duration facil-
ities [15-18] or by using short duration techniques [19,20]. Thin-film
resistance thermometers provide information of surface temperature and are
combined with a one-dimensional semi-infinite heat-conduction analysis to
yield time-resolved heat flux. Dunn and coworkers have pioneered this tech-
nique and, in their most recent work [15,16], have begun to obtain time-
resolved heat flux data in a real turbine stage at fully-scaled conditions.

At the University of Oxford [17,18], rotor wakes are simulated with a spoked
wheel rotating in front of a linear cascade and the results show that the wakes
impinging on the airfoil can cause the local boundary layer to undergo transi-
tion and reverse transition at the frequency of the passing wakes. O0'Brien et
al. [19] used the transient technique in a steady-running rig, also with a
spoked wheel wake generator, and showed that the time-average of the time-
resolved heat transfer agreed closely with conventional steady-state data.
Morehouse and Simoneau [20], used the same rig, see Fig. 2, and showed that it
was necessary to separate the heat transfer effects due to the unsteady dis-

turbances of periodic wakes from those generated by conventional turbulence.

The recent advances in computational fluid dynamics have made it possible to
predict blade pressure distributions, detailed boundary-layer and wake
profiles, skin-friction and heat-transfer coefficients by solving the steady,
full Navier-Stokes equations, see for example Shamroth [21]. Also Raj
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Figure 2. Experimental set-up of 0'Brien et al. [19].

[22] has attempted to reproduce Dring's measuremments by constructing a Navier-
Stokes computer code with a complex arrangement of patched and overlaid grids.
Navier-Stokes solutions have the advantage of enabling the prediction of both
attached and separated viscous flows and hence can be expected to become a
valuable engineering method as soon as computation times can be reduced and
questions concerning the computational accuracy can be resolved.

In this report an alternative approach is pursued which has proven reliable
and powerful in many external flows. It is based on the use of interactive
boundary-layer theory which requires the development of viscous and inviscid
methods and their coupling by special techniques such as those described in
[23-26]. The inviscid method must be able to cope with the periodic onset

velocities of Fig. 1b and their effects on the blade flow from the stagnation
region to wake. The boundary-layer method for the resulting unsteady flows has

to account for the reversals associated with the movement of the stagnation
point with time and space as well as flow reversals and separation that may
occur in the downstream region. The problem of flow reversal can be solved
without interaction between inviscid and viscous flow solutions but a special
numerical procedure is required to deal with the changing flow direction.

The work described here is directed towards the development of a general method
for calculating unsteady heat transfer on turbine blades. As an essential
preliminary we describe a general boundary layer method for calculating heat
transfer for prescribed freestream conditions and test it for three model



problems which emphasize the stagnation region. We assume that the external
velocity distribution is represented by a function

u (x,t)/u_ = ACE,t)[E - B(1)] (h

which allows the variation of the stagnation point and the freestream velocity.
The first model problem corresponds to flow over a thin ellipse in a constant
freestream velocity field with a uniform wall temperature and with a local
external velocity which changes with angle of attack. The second model problem
corresponds to an initially steady flow which accelerates from ue/um = ¢ at

t =0 to ue/um =2(% - 1) at 1?rge times with corresponding movement of the
stagnation point from 0 to 1. The third model problem corresponds to the flow
of [20], see Fig. 2, in which the flow over a circular cylinder with a uniform
wall temperature is subjected to an external velocity distribution which
changes with time due to the interference of a series of cylinders which are
attached to a rotating wheel. Measurements of local flow properties and of
wall heat transfer have been reported in [20] and allow quantitative assessment
of the calculation method.

The basic equations, initial and boundary conditions are considered in the
following section which is followed by a description of the numerical method
used to solve the boundary-layer equations. Section 4 presents the results and
discussion and the report ends with a summary of the more important
conclusions.



2.0 BASIC EQUATIONS

For two-dimensional, incompressible time-dependent laminar and turbulent
flows, the boundary-layer equations and their boundary conditions are well
known. Ffor specified wall temperature, no mass transfer and with eddy viscos-
ity, €’ and turbulent Prandtl number, Prt, concepts they can be written
in the form [27]:

du  av
5; + 5; =0 (2)
au au
du du du __e _e 9 au
at FUax *Vay 3t tlY ax tVay (P 3y (3)
aT 9T T v 9 aT,
at PUax TV ay ~ Pr 9y (b2 ay (4)
y =0, u=v-=20, T = Tw(x) (5a)
y = 8§, u=u(x,t), T = Te (5b)
b, =1 + b, =1 + B¢t -¢/ 6)
17 “m’ 2 ° Pr, ‘m m T " (

2.1 Turbulence Model

The presence of € in b] and b2 and Prt
various expressions can be used for this purpose. The choice lies between an
algebraic formulation in which detailed flow features, including transition
from laminar and turbulent flow, are represented semi-empirically and models
where the transport of turbulence properties is facilitated by differential
equations. The models of the latter type, including the ubiquitous k-e¢

model, offer the possibility of some degree of generality but, so far, have
been unable to deal with low Reynolds number phenomena. Since the representa-
tion of transition is essential to the present problem, we have preferred to
use the algebraic eddy-viscosity approach of Cebect and Smith, which s known
to represent transition adequately. The formulation is given by a two-layer
model defined by

in b2 requires a turbulence model and
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A = 26vu; , u. = (), Y = 6 (8)
P 1 + 5.5(y/8)

The condition used to define yC is the continuity of the eddy viscosity; from
the wall outward, Eq. (7a) is applied until its value is equal to that given
by Eq. (7b).

In Eq. (7), Ytr is an intermittency factor which accounts for the transi-
tional region that exists between a laminar and turbulent flow. It is given by

X
Yip = V- expl-6(x - x;) I %“ ] (9)
Xe o @

Here Xgp is the location of the start of transition and the empirical factor
G is

-1.34
xtr

G = ——

17200 2 R

(10)
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where the transition Reynolds number thr = (uex/v)tr.
Equation (9) has been determined in terms of flows where the freestream turbu-
lence was characterized by low intensities and small scale. Its extension to
turbine blade passages which are subject to onset flows with turbulence inten-
sities in excess of 15% and scales larger than the width of the blade passage
imply that modifications may be required. The flow of Ref. [20] involves a
freestream intensity in excess of 1% and intensities of 10% in the near wakes
of the circular cylinder which were used to simulate blade passing flows. As
a consequence of the above, the influence of Ytr must be determined empir-
ically and with consideration of these high turbulence flows.



2.2 1Initial and Upstream Conditions

The determination of the initial conditions required for the above system is
important and sometimes can be arbitrary but in that event, the values of du/dt
at t = 0 are nonzero; this implies an inviscid acceleration and, as a conse-
quence, a slip velocity develops at the wall and is smoothed by an inner

boundary layer initially of thickness (ut)]/2 in which viscous forces are
important. Thus a double structure develops in the boundary layer and may be
treated by the numerical method described in [28]. However, if interest is
centered on the solution at large times, this feature may be reduced in impor-
tance by requiring that the initial velocity distribution satisfies the steady-
state equation with the instantaneous external velocity. In addition, it is
necessary to smooth the external velocity ue(x,t) so that aue/at =0att=20
and standard numerical methods may be used and remain stable. The use of a
smoothing function introduces some loss of accuracy at small values of t but
the error soon decays to zero as the required value of ue s approached.

The calculation of upstream boundary conditions in the (t,y) plane at some
X = xo when the conditions at a previous time 1ine are known, can introduce
different problems. To illustrate these difficulties for the case of a moving
stagnation point, let us consider Eq. (1). Since ue = 0 at the stagnation
point by definition, its location, xs, based on the external streamlines is

given by
X = Alx ,t) (16)

Figure 3 shows the variation of the stagnation point with time according to Eq.
(1) with B(t) = 1T + ¢ sinwt, ¢ = 1, w = 7v/4. We see that the stagnation point
X js at 2 when t = 2 and at O when t = 6, etc. If X were fixed, we could
assume that u = 0 at Xo = 1 for all time and for all n, but this is not the
case. It is also possible to assume that the stagnation point is coincident
with zero u-velocity for a prescribed time but we should note that the stagna-
tion point given by Eq. (16) is based on vanishing external velocity. For a
time-dependent flow, as we shall discuss later, this does not necessarily
imply that the u-velocity is zero across the layer for a given §-location and
specified time; flow reversals do occur due to the movement of the stagnation
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Figure 3. Variation of the stagnation point with time according to Eq. (1).

point and cause the locus of zero u-velocity to vary with x requiring the use
of a special numerical method, as will be discussed in Section 3.

2.3 Transformed Equations

It is more convenient and useful to express Egs. (2)-(5) in a form more suit-
able for computation. To achieve this, we define the dimensionless variables
7, £, n, w, m, G together with a dimensionless stream function f,

tuo y u0 1/2 ue
t= s b=, on=(50) ¥, W= U; )
(1)
(1T -T) T -7
1 w e w 1/2
m = ' G = ———— ’ ‘3' = (U \)L) f(E,ﬂ,T)
(Tw - Te) dt Tw - Te 0
Equations (2) to (5) become
! ow dw  of' of !
" n - —_— |
(b]f ) + f"6 + aT+ W 3E- 3t + f at (12)
1 ' ) 13 a—G~ ] a—G—
(byG') + G'6 + m1 - G)f' =3+ f Y: (13)
n=20, f=f"=0, G=0 (14a)
n = ﬂe, f' = w, G = ] (]4b)
where
of
0 = 5§ (15).

As we shall discuss in Section 3, the upstream conditions can be obtained by
solving the above system with a special numerical solution provided that the



initial conditions are known. The latter can be obtained by making use of the
steady-state conditions and expressing Eqs. (12) and (13) in the form

! aw af'
[} L[} A | ——
(b]f y + f'9 +w T f at (16)
(b G')' + G'6 + m(1 - G)f' = f' 6 (17)
2 ok
There is no problem with the initial conditions for these equations since
calculations are first performed for laminar flows which admit similarity
solutions at the stagnation point. The transitional and/or turbulent flow
catculations can then be started at any location away from the stagnation

point by specifying the location of the onset of transition.



3.0 NUMERICAL METHOD

There are several numerical methods that can be used to solve the equations of
the previous section, including the finite-difference methods due to Crank-
Nicolson [29] and Keller [30]. Either scheme can be used satisfactorily for
time-dependent boundary layers when there is no flow reversal across the layer
although the Kelier scheme has more desirable features than that of Crank-
Nicolson for turbulent flows. When reversal occurs, and for problems associ-
ated with upstream boundary conditions such as those considered here, the
advantages of the Keller scheme become more pronounced and necessitate its use
as we shall discuss here. Only the solution of the continuity and momentum
equations are discussed. The energy equation is linear and is uncoupled from
the momentum equation so that its solution is straightforward and is described
in detail in [27].

In this report the box scheme is used in two forms which depend upon the nature
of the flow and, in particular on the presence or otherwise of reverse flow.
The reqular box scheme is used where the flow is always in the streamwise
direction and is described in the following subsection. The characteristic box
scheme, developed by Cebeci and Stewartson, is used to compute flows with nega-
tive streamwise velocities and also to generate the upstream boundary condi-

tions discussed in subsection 2.2.

3.1 Reqular Box Scheme
To solve the momentum equation for steady-state conditions subject to its

boundary conditions by Keller's scheme known as the Box method, we let f' = e
and introduce a new function g defined by

e' =g (18a)

and write Egqs. (15), (16) and (17) with b] = b as

0 - 32 (18b)
. o 2e

(b]g) + ge + W % = @ F1 (]BC)

n = 0, e = 9 = 0; n=n ] e =W (]9)

10




To write the difference equations for the system given by Egs. (18) and (19),
we consider a net rectangle in which the net points are denoted by

(20)

The finite-difference approximations to Eq. (18a) are obtained by averaging

about the midpoint (51, "j-]/z)’

-1, 1 i i _ 3 i
hj (ej - ej_]) = gj_]/z = ]/2(9j + gj-]) (21)

and those to Eqs. (18b,c) by centering all quantities except © at the center

of the rectangle (% ) and taking the values of each say e,

1-172° "3-1/2
at the corners of the box, that is,

-1
=172

1-1/2

1.0 1,1 121
o172 =2 (8510t ) =y eyteg g re +ey) (22a)

e1
J
The centering of 6 is achieved as

1-1/2

1172 i-172
j-1/2 = 2

(9j + Gj_1 )

In this notation, the difference approximations to Eqs. (18b,c) can be written

6

(6 (22b)

1
> 3 + Bj_])

in the form:

1

-1 -1, i i-
hj ((-)j - ej_]) = r1 (ej_]/2 - ej_]/z) (23a)
1,9 1 i i i -1 -1, 2.1 -1
hy (Py95 = Pya950) T 95012% 172t 95172%12 - T (B )5y ¢ Rj—1/2(23b)
where
i-1 -1,,.4-1 4-1 i-1 1-1 -1, 2.1 2,.1-1 2,.1-1
Ryctya = = thy by gg 7 = by 495 4) = ry LW 3 4,5 = Wy g5 * ()5 4,01
(24)
The boundary conditions, Eq. (19), become:
€g = eo = 0, €] = W) (25)

The system given by Eqs. (21), (23a,b) and (25) can be linearized by Newton's
method and can be written as

"
Gej - éej_] -3 (égj + égj_]) = (r])j (26a)

1



1 _1 -

66j - éej_ > ( )(aej + aej ]) = (r3)J_] (26b)

(s])jégj + (sz)jégj_] + (53)j6rj + (54)Jérj_] + (ss)Jéej
+ (ss)jéej_] = (r2)j (26¢)
deq = 86,5 = O, de; =0 (27)

where
(ry)y = - (ei ~ el ) +h ! (28a)
| RE TS TS B 393—1/2

i1 ! 1-1/2 -1
(ry)y =Ryq/2 - [hj (bj j by_ 193 V295 9,285002 7 T (8)502) (28
Ei i -1
(rgdyoy = - (O = 85) + 70 (Bgyy2 = €5.172) (28c)
-1 1 1-1/2 -1
(sy)5 = byhy  + 585 1,2 (5g)5 =959, (Sg)y = -1y &
1 ] (29)
(525 = =By ahy + 2 844, (sg)y = (53); (Sg)y = -'3 €59
The resulting linear system, Egs. (26) and (27), can be written in the form
R (30)

~'

and can be solved by the 3 x 3 algorithm based on the block elimination method
described in [27].

3.2 Characteristic Box Scheme

The procedure of the previous sub-section provides a solution of Eq. (16),
starting at the stagnation point § = ES, for a prescribed velocity distribution
w(E) at 1(0) = 0 and, as a result, the solutions on the next time "1ine" can be
determined by an explicit method. If we wish to avoid stability probiems, how-
ever, an implicit method is required and the generation of upstream boundary
conditions for the momentum equation (and the energy equation) becomes more
difficult. An accurate and efficient method for this purpose is the character-
istic box scheme which is able to deal with the moving stagnation point and theb
flow reversals which result.

12



To describe the characteristic box scheme, we note the definition of local
streamlines and write

dt = dg (31)

e

If we designate distance in this direction by s and the angle that it makes
with the 1-axis by B, (see Fig. 4) then Eq. (18c), which in terms of new
variables e and g, 1is

ow w de de '
(bg)' + g6 + 5; + W SE = 5; + e SE (32)
can be written as
(bg)' + gb + %% +w %% =\ %% (33)
where
2
A = 1 +e (34a)
-1
B = tan e (34b)

.,

0]

Figure 4. Notation and grid for the Characteristic Box scheme. For details,
see [25].

The solution procedure for the system given by Eqs. (15a,b), (16) and (33) fis
similar to that of the previous sub-section with small differences due to the
manner in which the difference equations are written for Eq. (33). Also, since
now we are considering a three-dimensional form of the equation, we also con-
sider the net points

T =0, T =71 + k n=1,2, ..., N (35)

13



in addition to those given by Egq. (20). The difference approximations to £qs.
(18a,b) are identical to those given by Eq. (21), (23a) except that the super-
scripts 1 on each variable also include n. To obtain the solutions on the
first time line 1], let us assume that the stagnation line based on the
external streamline is given, the solution of point 1 is known, and direct our
attention to point 2. The finite-difference approximations to Eq. (33) are

written along the streamline direction (see Fig. 4) at point P

-1
?) . _j_ (bm n-1 ? n-1 _ b?

1, 1,n m n-1
+ 2095090 * 95! 1/2)93 172

-1
h

j i,n d,n ,i,n 1, ,n-1 _m,n-1
2 (bj gj bj—]gj— 21 gj—] )

+ 9% (P) + w %% (P)

ei,n em,n-]
1 m,n-1, “j-1/2 ~ “j-1/2
= = (x + A, ) (36)
2 ‘- 1/2 j-1/2 Asj_]/2
where
kn
(37)

As =
j-1/2 cosBj_]/Z

The relation between 6?_1/2 and those values of 0 centered at (i1-1/2, n-1/2)
and (1-3/2, n-1/2) are

1-372 1-1/2

0 -9
P j=1/2 j-1/2 1-3/2
6 = (E - E ) + 0 (38)
j-172 E1_3/2 - 21_1/2 1-3/2 j-172
m,n-1
Rearranging Eq. (36) and denoting RJ_]/2 by
m,n-1 m,n-1 m,n-1 m,n-1 m,n-1 oW W
RJ ]/2 = - [hj (bj gj - bj—] gj—] ) + 2 a1t (P) + 2(W aE)(P)
m n-1
Y ?/; As-]/ ] (39)
J- j-1/2

it can be shown that the linearized version of the resulting expression can be

expressed in the same form as Eq. (26c¢), with

-1 -
(S])j = hj +Cy (s2)j = -hj] +Cq
(40)

i,n m,n-1
(533 = (Sgd5 = =7 (932972 * 9519/2)

14



(sg)s = ~C, + 6 e (s.) C. + 6 e
513 = "4t Tn © 6)3 7 5t Tn 8-
3-1/2 3172
and
m,n-1 -1, .1,n 1,n i,n i,n i,n m,n-1,.P
(rody = RyZqp = [hy (by7rgy™ = byTy9579) + (957 0 *+ 9577,2085 0
e1,n em,n-]
- O3 N T A, iR (41)
J-1/72 j-1/2
where ¢y to ¢y are given by
p
R 7/ RV o]
17 8.3/ - .12 2 3-12 3 Bsy 402
c ei,n
R I I Y i,n m,n-1
C4 =2 [Xi,n el 2 * Ml t My
321/2
(42)
c ei,n
_ 3 -1 i,n i,n m,n-1
C5 = 2 [X1,n e5l172 * Mle t M eDb
3172
€3 m,n-1 ] 1-1/2
% = 2 %172 0 G 72 [0 - 8500 + 6l

The resulting equation, which is analogous to Eq. (23c) can then be solved
together with Eqs. (23a,b) and (24) by using the same block-elimination method
employed to solve the system given by Eqgs. (23) and (24).

To generate the upstream boundary conditions, let us initially assume that the
first profile on either side of the "edge" stagnation point is known and that
we are interested in computing the flow say at 2 (see Fig. 4). If there is now
flow reversal at that point, then an extension of the procedure discussed in
the previous sub-section can be used to obtain a solution there. 1In the pres-
ence of flow reversal, we use the characteristic box scheme on an iterative
basis. To explain this further, let us assume that ej in Eq. (36) is

known, then the solution of the momentum equation at point 1 by the character-
istic method can be achieved by solving Eqs. (23a,c) in the form

15



"
6ej - éej_] -3 (6gj + 6gj_1) = (r])j (43a)

(s])jégj + (sz)jégj_] + (ss)jéeJ + (ss)jéej_] = (r2)j (43b)
subject to the boundary conditions

Seg = 0, sej) = 0 (44)

Once a solution for the point 1 is known, solutions to all the points to the
right and to the left of point 1 can be obtained by the general characteristic
scheme without further approximations. Thus the only approximation on a given
time 1ine results from the solutions generated at point 1. Our calculations
have shown that the influence of point 1 on its neighbors decreases with dis-
tance. Thus the approximate solution at point 1 can be further improved by
repeating the calculations at point 1.

16



4.0 RESULTS AND DISCUSSION

The numerical procedures of the previous section have been used to obtain solu-
tions of the continuity, momentum and energy equation for three model problems.
The results are presented and discussed in the following three subsections and
correspond to uniform wall temperature (m = 0) and Prandtl number 0.72. The
first two model problems involve laminar flows and the third addresses laminar
and turbulent flows. It should be emphasized that these model problems have
been designed to test the numerical procedure which has been formulated in a
general way so that its application can readily be extended to the more prac-
tical flows discussed in the introduction.

In regions where there was no flow reversal, the standard box scheme has been
used. Where the calculations revealed flow reversal, the solution procedure
subsequently made use of the characteristic box scheme.

4.1 Oscillating Airfoil Model
The first model problem corresponds to flow over an ellipse with a thickness

ratio y(=b/a) and with y << 1 at an angle of a. The surface of the body is
defined by

X = -a cosd, y = ay sine, -m< ¢ < 7 (45)

With these definitions and to a first-order approximation, the external veloc-
ity for the steady flow in the leading of a thin ellipse can be deduced from
inviscid flow theory to be

u(z) = —— (46)

Here Ue(z) denotes a dimensionless velocity, the parameter z denotes a dimen-

sionless distance related to the x- and y-coordinates of the ellipse by x + a

= (1/2)a7222, y = ayzz measured from the nose, and z0 represents a reduced

angle of attack. The parameter z is also related to the dimensionless surface

distance § with L = yza by § = I;(l + 22)]/2dz. In the present study we extend

Eq. (46) to unsteady flows by introducing time dependency as

u (z,1) = (47)
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Figures 5 to 8 show the calculated results for two circular frequencies, w =

v/30, w/3 with 2, = 1 and ¢ = -1/2. They demonstrate the effects of the
frequency on the wall shear f"(0), wail heat flux G'(0) and dimensionless

displacement thickness, A*, which are defined by

1 q L
£1(0) = —"’5@ ., G'(0) = L (48a)
pu’ k\/f{(Tw - T
u -]
a* =1 SR - Yy (48b)
0 0 e

The results of Figures 5a and 5b indicate that the time dependent effects on

the solutions increase significantly as the circular frequency w changes

from w =v/30 to v/3. While the wall shear and displacement thickness values
computed at wt = v and 27 with w = /30 are nearly the same as those at 1 = 0,
they differ considerably from each other when w = w/3. The results in Figure 6
show, however, that increasing the circular frequency by a factor of ten has
practically no effect on the wall heat flux.

b)
(a) ¢

Figure 5. The effect of frequency on the (a) wall shear parameter, f'(0), (b)
displacement thicknesds, A*, of the first model problem.
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Figure 6. Variation of the wall heat flux parameter, G'(0), with z for the
first model problem with w = w/30. The results with v = w/3
are virtually identical to those obtained with the smaller
frequency.
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Figure 7. Variation of the velocity profiles for w = /30 near the stagnation
region of the first model problem for different values of wtr, (a) 90,
(b) 180, (c) 270, (d) 360.
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Figure 8. Variation of the velocity profiles for w = /3 near the stagna-
tion region of the first model problem for different values of wrt,
(a) 90, (b) 180, (c) 270, (d) 360. The dashed line indicates the
locus of zero u-velocity.

Figures 7 and 8 allow the examination of the effect the frequency has on the
calculated velocity profiles in the vicinity of the stagnation point. Figure
7 shows that the locus of the u-velocity on time lines =t = /2 and v is
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essentially the same as in the steady case and as a result there are no flow
reversals in the velocity profiles. However, as can be seen from Figure 8,
increasing the frequency to w/3, flow reversals begin to occur around the
stagnation point and become rather prolonged as time increases to wt = 3w/2.
At wt = 2w, the region of flow reversal is reduced but is not zero, as it was

at wr 0.

4.2 Gust Response Model

The second model problem allows us to study the transient motion between the
two steady stagnation flows similar to those an airfoil would encounter during
a gust or change in incidence as an initially steady-flow accelerates from
ue/u°° = ¢ to ue/um = 2(E - 1). For this purpose we use Eq. (1) with w = /8
and

A(t) = 2 - cos2wt, B(1) = sinwt 0 <T1<8 (49)
This flow has been studied by Cebeci, Stewartson and Williams [28] with
slightly different forms of A(x) and B(T)
A(t) = 2 - e T, B(1) =1 - e T (50)

than those used here. Our modified expressions were required to ensure that
(aue/at) is equal to zero at t = 0, as discussed previously.

Figure 9 shows a comparison between the two external velocities considered in
[28] and in the present study, and Figure 10 shows the results of the present

1.0¢

05
Ug
o A -
5 6
R R PRESENT METHOD
\ - - REFERENCE 28
o \\¢-OD
-1.0} (
\
2
-1.8F N
15 .
~ ~,
U
20l =

Figure 9. Variation of external velocity with time for the second model
problem.
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Figure 10. Variation with time of (a) wall shear parameter, f"(0), (b) wall
heat flux parameter, G'(0), and (c) displacement thickness, A*
for the second model probiem.

calculations together with those of [28]. Our calculated results correspond

to nondimensional forms of the wall shear, f"(0), wall heat flux, G'(0), and

*
displacement thickness, A*(= /RL GO/L) where
_l «©
§* = — | (u. - u)dy (51)
0 U, g e

The results of [28] were obtained for momentum based properties which are

1inked to the above definitions by

£'(0) = (8 - B)t + g"(0) (52)

A*

(€ - 8)8, - g (53)

*
with t, g"(0), 60 and g_ denoting here the parameters computed in [28].

As expected, the results in Figures 10a and 10c show that the behavior of f"(0)
and A* is different during the transient motion due to the use of different
functions for A(1) and B(t). In each case, however, the solutions approach
the asymptotic values relatively fast. The results for G'(0), shown in Figq.
10b, were obtained with the present method since the study of [28] did not
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consider the energy equation. Again, as expected, the solutions of the energy
equation approach the asymptotic value of 0.7095 [27].

4.3 Rotor Wake Model
The third model problem involves flow on a circular cylinder of diameter D

which experiences the periodic passing of wakes. It corresponds to the experi-
mental arrangement of [20], see Fig. 2, and permits comparison between calcu-
lations performed for turbulent flows with measurements. The model problem is

first addressed in terms of laminar flow to test the numerical procedure.

Figure 11 shows the flow configuration and the notation for this model problem.
For a time period tg, the cylinder is subjected to a freestream velocity Vw and
for tw it 1s immersed in a superimposed rotating wake which has a rotational
component wr. The cycle repeats itself with a blade passing frequency F(=1/(t
+ tw)] and is related to the Strouhal number St by FD/Vm. To derive dimension-
less expressions for the parameters A(%,t) and B(1) in Eq. (1) needed to define
the external velocity distribution near the stagnation region, we adopt the
procedure discussed in the Appendix.

_I. %
L

Figure 11. Notation and flow configuration for the rotor-wake model.

At first the calculations were performed for a laminar flow in order to test
the numerical procedure. With the choice of E2 = V10, E] = 100 and Vm = 1/3,
the parameters A, B and f, Eqs. (A-15) to (A-17) become

aGr) = [£2 + T0(st)2(1 - £)%1/2 (54)
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B(1) = tan”) [/10 St (]—;—i)] (55)
f - % . % cos[r(1 - 100 St1)] (56)

The computed values of wall heat flux, G'(0) for two values of Strouhal number
show that they are not influenced by the changes in the freestream velocity and
are virtually constant for the range of t and 1t values considered with G'(0)

~ 0.50 for St = 0.1 and G'(0) ~ 0.51 for St = 0.2. On the other hand, as

shown in Fig. 13, the computed values of wall shear, f"(0), for St = 0.1 are
significantly influenced by the changes in the freestream velocity which causes
flow reversals in the velocity profiles around the stagnation point based on
the vanishing of the external velocity. The movement of the stagnation point
and the resulting flow reversals increase with time and with space. For
example, the calculations for steady state have the stagnation point at £ = O,
and, as expected, there is no flow reversal on either side of the stagnation
point. At t = 0.05, the stagnation point moves to £ = 0.15 but the flow rever-
sals in the velocity profiles continue up to and including § = 0.85 as can be
seen from the results shown in Fig. 14. At v = 0.10, Fig. 13, the stagnation
0.55 but the flow reversals persist for a longer distance
1.20. As can be seen from the velocity profiles in Figqg.

point has moved to

and continue until ¢

Figure 13. Vvariation of the wall shear parameter, f"(0), with £ for the
third' model problem. St = 0.10.
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Figure 14. Vvariation of the velocity profiles near the stagnation region of
the third model problem for two values of time. (a) 1 = 0.05,
(b) T = 0.10.

14, the region of flow reversal across the layer has now increased and is sub-
stantially more pronounced than that at 1 = 0.05.

The wall shear and displacement thickness results for St = 0.2 show similar
trends. As expected, the flow reversals in the velocity profiles, for example
at v = 0.10, are bigger than those at St = 0.1 but cover the same range in §.

The above laminar flow results show that the numerical procedure is able to
obtain solutions for a range of blade-passing frequencies of practical rele-
vance. The movement of the stagnation point with space and time and the
resulting flow reversals around the stagnation point cause no computational
difficulties and the numerical tests show that the accuracy is better than
required for practical problems.

The present method is applicable to laminar, transitional and turbulent flows.
It requires that the calculations start as laminar from the stagnation point.
The onset of transition can be assigned to occur in accordance with experiments
and the subsequent transitional and turbulent flows can be represented by the
algebraic eddy-viscosity model described in Section 2.2. As a consequence of
this model, the length of the transitional region is depended upon the free-
stream conditions.

In the case of turbulent flow, estimates of E], E2 and Vm can be obtained from
the experiments of Ref. 20. We note that D represents the diameter of the
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heated stator, d the diameter of the rotating pin, S the separation distance
between the two pins of diameter d and D (see Fig. 2), r the distance from the
axis of rotation, CD the drag coefficient of the n number of rotating pins,
and vm the wake centerline velocity. The experimental values are D = 12.7mm,
d =3.18mm, S = 25.4mm, r = 16.925cm, C_ = 1.2, n = 24, vm = 0.62, so that

D
E, =79, 52 = 3.49 and
A(T) = [f2 * (3.49)2(St)2(1 - fz)]”2 (57)
B(1) = tan” [3.49 (l—§~f)] (58)
f = 0.8 + 0.19 cos[w(1 - 79 St1)] (59)

Calculations using Eqs. (57) to (59) in Eq. (1) were performed in the above
manner to simulate the near stagnation region of the flow of [20]. The onset
of transition was set very close to the stagnation point and transitional and
turbulent flow calculations were performed for 0 < t < tw + tg, for one cycle
for the experimental Reynolds number of Rd = 76,000. Since the experimental
data suggests that the average Nusselt number is relatively constant and is
ten-percent higher than that of laminar flow, it was assumed that the transi-
tional region was negligibly short. Furthermore, the present eddy-viscosity
model is a function of the velocity field and the heat transfer parameter is
relatively constant in the stagnation region 0 < 6 < 40°, so that it was fur-
ther assumed that the eddy viscosity in this region be constant. This implies
that the distribution of eddy viscosity determined at the end of the transi-
tional region [Ytr = 1] retains the same numerical value throughout the turbu-
lent flow calculations. As a consequence of the above, the ratios of the
aver- age Nusselt number, Nu, on the blade passing a wake to that of a blade
in a freestream during one cycle, Nus, used in the presentation of the

experi- mental results were calculated from

tw t +tw
I ¥ Nudt + 9 Nugdt
Nu_ Nub + Nug i o tw (60)
NuS - NuS - t +tw
9 Nugdt
0

Since the cycle time is tw + t , the numerator of Eq. (60) contains two parts,
one for the blade being submerged in the wake, Nub, and the other for the base
in a freestream, Nug, during time tg where the flow is laminar and admits
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similarity. In the transformed coordinates of the calculations, the ratio of the
averaged Nusselt number may be written as

2w
] [}
OI GwdT + (Gw)ﬁtg

(6 )g(tg + )

Nu

NuS

(61)

]
where (Gw)Q = 1.0034 for laminar flows. The measured and calculated values of
average Nusselt number ratios were found to be 1.1 and 1.09, respectively, and

constant throughout the turbulent flow region. The closeness of the two
results is gratifying but should be viewed with caution bearing in mind the
assumptions which have been made in relation to the eddy-viscosity model and
the assumed freestream velocity distribution. Alternative approaches to the
representation of the turbulence characteristics of the stagnation region have
been examined, for example by Taulbee and Tran {[31], and deserve future co?—

sideration. 1In addition, the integration of the heat transfer parameter Gw
is subject to some uncertainty in the blending region between laminar and

turbulent flows.
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5.0 CONCLUDING REMARKS

The work of the preceding sections represents essential steps in the develop-
ment of a general method for the calculation of unsteady heat transfer on
turbine blades. It has emphasized the stagnation region since this must be
correctly represented in order for the method to calculate the flow and heat-
transfer characteristics of a blade passage. This region involves a moving
stagnation point with consequent reverse flows and has required the development
and use of a novel numerical procedure to solve the equations for conservation
of mass, momentum and energy. The characteristic box scheme, with its stabil-
ity requirements, has been used in regions of reverse flow and the standard box
scheme elsewhere. Transitional and turbulent flow have been represented by an
eddy-viscosity formula.

The method has been applied to three model problems devised to allow its quan-
titative evaluation. They correspond to an ellipse, with leading-edge geometry
similar to that of a thin airfoil, oscillating with a uniform-velocity onset
flow; a stationary airfoil subjected to an onset velocity which changes sud-
denly; and to a cylinder which experiences an onset flow with periodic wakes.
Laminar-flow calculations were performed for these three model flows and
results presented to demonstrate that the method is able to calculate their
essential features in a convenient and numerically accurate manner. The third
problem simulates an experimental arrangement for which heat-transfer measure-
ments have been reported and calculations were performed to include the transi-
tional- and turbulent-flow regions; again the method predicted results which
represented the essential features of the flow, including an averaged Nusselt

number in close agreement with the measured value.

The results confirm that the calculation method correctly predicts the flow
characteristics of the stagnation region of unsteady flows of relevance to
blades subjected to onset velocities which vary in space and in time. The
method can now be extended to include procedures for the solution of the
unsteady, inviscid-flow equations and to ensure interaction between the invis-
cid and boundary-layer flows. Both procedures have already been developed so
that the general method can be assembled and applied to blade-passage flows.
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Appendix
EXTERNAL VELOCITY DISTRIBUTION IN THE STAGNATION REGION
WITH NONUNIFORM ONSET FLOW

Consider a fixed circular cylinder of diameter D in a uniform flowfield Vm
which is disturbed by passage of wakes shed from rotating blades with a rota-
tional velocity wr. Assume the wakes to be nonoverlapping so that a single
wake (for simplicity taken as symmetric) relative to the blade is given as
shown in Fig. 11. To determine the onset flow V and the angle of attack o
with respect of the stationary cylinder as a function of time, we observe that
the onset flow velocity relative to the moving cylinder fis VR and that the
cylinder sheds a wake whose velocity distribution parallel to the VR—direc—
tion is given by

Y
Vy = Vef(3)

Here y denotes the distance normal to VR and 8§ the wake half-width. The
velocity in the wake with respect to the stationary cylinder, V, can then be
obtained by subtracting the rotational speed wr from V] as shown in Fig. Al.

In terms of known quantities, it follows from Fig. Al that

2 2

- fl ‘*’——v; (1 - £)2)'/2 (A-1)
wr 1 - f

tana = v_ ( f ) (A-2)

wr

?

Figure Al1. Sketch of velocity vectors behind a moving blade row.

To apply Egs. (A-1) and (A-2) to the stagnation point solution on the circular
cylinder, we make further simplifying assumptions as follows: although Egs.
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(A-1) and (A-2) represent a variable onset flow for the whole cylinder, we take
the stagnation point location to be determined by the angle o, or that 8 = a

on the cylinder periphery, and let the instantaneous onset flow be equal to V.
This 1s clearly a quasi-steady approach which becomes more accurate as the
ratio of the cylinder diameter with respect to the wake width decreases. By
analogy to the steady-state flow around the stagnation point, we write for the
velocity at each instant

ug - %1 (X - X)) (A-3)

where X0 is the stagnation point location with respect to a = 6 = 0.
Inserting Eqs. (A-1) and (A-2) into Eq. (A-3), we obtain:

u 2 2
R I L i e e DI R )

©
> <]

For a symmetrical wake, the nondimensional velocity distribution f may be

represented by:

c.d 1/2 3/2 2

fH =1 -0.976 () - |§| ] (A-5)
Here C_.d 1s the drag area of the blade and S is the distance from the blade

D
to the cylinder. Equation (A-5) can also be approximated by

£y - > m_ > M cosw (%)

with Vp denoting the nondimensional centerline velocity given by

ch 1/2
Vm =1 - 0.976 (—g—)

To introduce time dependence, we observe fhat the wake width W in the plane of

rotation of the cylinder is:

we2_ R (A-6)

Since one wake covers GVR/er°° of the periphery, the period tw for

one wake to pass is:

26V (1 + (wr/v )21"/?
R 28 > (A-7)
v (@r /V)

«© ©

tw = reV
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If thefe are n blades, the period tg for one gap fis
t = — -t (A-8a)

or in terms of the biade passing frequency F

nw
F = - (A-8b)

The full width of the wake, 268, is given by
28 = 1.]32(CDdS)W2 (A-9)

It takes time tw to travel across the wake of distance 28, so that in time
t, the normal distance traveled is:

28t

Y=} (A-10)
W
Here y is measured from the edge of the wake
y =8 -y (A-11)
so that:
Y _,_¥Y_ 2t
s " 1 - = 1 - tw 0<tcx< tw (A-12)

In terms of the relations defined by Eqs. (A-7), (A-9), (A-10) and (A-11), and
with the definition of Strouhal number St, Eq. (A-12) can also be written as

AR M SRV (A-13)
[1 + E2 St°]
where 1t 1s a dimensionless time
vt
T (A-14a)
and the parameters £y and E, are defined by
E, o . E, = %%1 (A-14b)

1.1320(C, d/0 s/0)V/2
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Noting that f is a function of t and that Eq. (A-4) is of the form given by

Eg. (1), we can represent the external velocity distribution near the stagna-

tion region of the circular cylinder with u_ = sz' t = 2x/D = x/r, St = (n/7)(wr/
Vm) by defining A and B as

ACE,T) = [f2 + E g(st)z(l - f7? (A-15)
B(1) = tan” [€, St (l—§~f)] (A-16)

1 +V 1 -V
f(1) = —5— + —5—" cos [v (y/8)] (A-17)

with y/8 in Eq. (A-17) given by Eq. (A-13).

As we can see from Eqs. (A-15), (A-16) and (A-17), an expression of the form
given by Eq. (1) can be obtained for the stagnation region of the cylinder as
a function of St by assigning values to E], E2 and vm. This can be done

for both laminar and turbulent flows as discussed in Section 4.3.
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